
 

 

 

  

Abstract— Industrial image datasets for quality inspection are 

mostly sparse in defects. It is then hard for both automated 

optical inspection (AOI) machines and simple neural network 

classifiers to inspect all defects effectively. In this work, we 

develop a novel framework for industrial anomaly detection in 

one-class classification manner, which utilized pre-trained 

generative adversarial networks (GANs) as the rule of thumb to 

perform anomaly detection. Our results show that GANs are 

able to capture arbitrary and structural industrial images and 

can effectively discern defects when the query images are 

defective. 

I. INTRODUCTION 

With the fast development of techniques in Artificial 

Intelligence, many advanced algorithms have been applied and 

verified on open-source datasets (e.g. ImageNet, COCO, 

CIFAR-10). Despite their good qualities and great 

performance on these popular datasets, the performance of 

these algorithms drops when directly applying on real-world 

industrial datasets, which possess large variations and 

uncertainties. Moreover, due to the demand of extremely low 

false-positive rate, industrial datasets are highly imbalanced, 

which means that qualified samples greatly outnumber 

defective samples. This predicament makes the training of 

neural network classifiers even harder.  

In real situations, defects in industrial datasets, compared 

to the whole image, are often very small in size. Convolutional 

neural networks (CNNs) often perform poorly to capture these 

small features. Therefore, it is hard to develop general 

algorithms across different industrial datasets. One-class 

classification (OCC) [1] has been used for anomaly detection 

tasks [2, 3] by learning only the positive class of data, where 

the negative class of data is either absent, poorly sampled, or 

ill-defined. In industrial applications, where the qualified 

samples occupy nearly the whole dataset, it is then logical to 

adopt the idea of one-class classification. However, there has 

not been work of OCC for industrial datasets due to the lack of 

an effective procedure to handle the large variety of images. 

In this paper, we proposed a novel one-class classification 

method for industrial anomaly detection. Instead of directly 

applying neural networks as classifiers on industrial datasets, 

we use the framework of generative adversarial networks 

(GANs) [4] to perform anomaly detection. GANs have been 

successfully used for dataset training such as MNIST, CelebA, 

or LSUN etc. A major advantage of GANs is that they are able 

 
 

to capture the distributions of the input samples of these 

datasets for its ability to represent the associated contents using 

an effective model-based approach. This advantage is helpful 

in industrial datasets, where the positive data possess large 

variance and its number far exceeds negative data. When we 

have large number of qualified1 samples, it is then likely to 

represent (or learn) the distribution of these data through the 

methods of GANs. Subsequently, the defective samples, 

which do not conform to the learned distributions, exhibit 

different characteristics that can be discriminated easily. The 

proposed approach is successfully verified through a number 

of image datasets produced by manufacturing processes in this 

paper.  

Our main contributions are summarized as follows. (1) We 

show that generative adversarial networks perform well on 

generating industrial image datasets; (2) We proposed a new 

method using a generative adversarial network for anomaly 

detection on industrial datasets in the one-class classification 

manner; (3) We reconstruct the image using the optimized 

latent vectors of several industrial datasets and show that it is 

able to visually discern the defects; (4) We provide a 

quantitative measurement to distinguish defective samples 

from qualified samples and can determine how defective the 

samples are. 

II. RELATED WORKS 

A. Classification and Anomaly Detection in Industry 

The goal of anomaly detection is to detect the data that do 

not fit in the same distribution of normal data. Deep learning 

approaches [5, 6, 7, 8, 9, 10] have been used in industrial 

applications recently. Ren et al. [5], Kim et al. [7], and Park et 

al. [8] utilized pre-trained Convolutional Neural Network 

(CNN) models on open source datasets and discovered that 

transfer learning performs well on industrial datasets. Cha et 

al. [6] also designed a CNN for detecting crack damages using 

vision-based methods. On the contrary, Ritcher et al. [10] 

developed a new work flow for AOI machines based on deep 

learning techniques. However, these works still need large 

amount of both positive and negative data to train the 

classifiers. 

B. Generative Adversarial Networks 

The original GAN structure was first proposed by 

Goodfellow et al. [4], and its training mechanism and 

1 In our work, we refer positive data to qualified samples, negative data to 

defective samples. 
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functionalities have been improved and modified by several 

important works [11, 12]. Generally, a GAN consists of a 

generator G and a discriminator D, where in most cases, are 

both deep convolutional networks. Radford et al. introduced 

Deep Convolutional Generative Adversarial Network 

(DCGAN) [13], which investigates on the stability of training 

GANs and shows comparatively prominent results among 

other models. They also demonstrated that arithmetic 

operations in latent space is feasible in producing customized 

results. In this paper, we will use the structure and 

configuration similar to DCGAN across our experiments. 

C. Inverting Generators 

In literature, many of the works in GANs are applied only 

to train the generator to generate images. However, several 

works [14, 15, 16] attempted to recover the latent 

representation of an image with respect to the generator, and 

they showed that it is possible to learn the inverse 

transformation of a generator. Similar to our work, Bora et al. 

[17] utilized the differentiability of GAN and applied the 

gradient descent algorithm to optimize the representation such 

that the corresponding image has small measurement error. 

Further, Bruna et al. [18] explored the theoretical conditions 

for a network to be invertible. For visualization of 

representations, Zeiler et al. [19] used the gradients of a 

particular feature of a convolution layer and propagated back 

to the image space in order to visualize what the feature stands 

for. Other works [20, 21] have used an optimization of a latent 

representation to generate realistic images. In their works, as 

well as ours, the loss used in training the generator and 

optimize the latent space are different.  

III. THE PROPOSED APPROACH 

Industrial anomaly detection is a challenging task because 

defects in industrial datasets are often not well-defined as in 

other areas and it is usually hard to know the variations of 

defects. For example, the defective areas in wood texture are 

blurry and small, and the distributions of the defects are 

different from one another. Our method aims at solving this 

problem with one-class unsupervised learning via GANs. The 

overview of the proposed method is shown in Fig. 1. 

A. Training Generative Adversarial Networks 

GANs are able to learn the distribution of real data via 

adversarial training. In our approach, we train a generative 

model and focus on the learned mapping from latent space to 

image space. We are given N industrial qualified samples 𝑥𝑛 ∈
ℝ𝑚×𝑚 , where n = 1, 2, ..., N, and m is the height of input 

images. During training stage, we only feed 𝑥𝑛 into our GAN, 

so that we can learn the standard mapping of qualified images 

from latent space to image space. 

As shown in Fig. 3, a generative adversarial network is 

composed of two modules, a generator G and a discriminator 

D. The generator learns the distribution 𝑝𝑔  over data 𝑥  by 

mapping 𝑧 sampling from the latent space ℤ to image space ℝ 

as 𝐺(𝑧; 𝜃𝑔), where 𝜃𝑔 is the parameters of the G. Meanwhile, 

the discriminator learns the probability that 𝑥 comes from the 

distribution of real data 𝑝𝑟  or the distribution of generator 𝑝𝑔, 

which is denoted as 𝐷(𝑥; 𝜃𝑑), where 𝜃𝑑 is the parameters of 

D. In other words, during optimization, G and D play the 

following two-player minimax game with value function 

𝑉(𝐺, 𝐷) as formulated in equation (1).  

where 𝐺(𝑧; 𝜃𝑔)  and 𝐷(𝑥; 𝜃𝑑)  are shorthanded as 𝐺(𝑧)  and 

𝐷(𝑥)  respectively. The objective of the discriminator is to 

maximize the probability of assigning real data from 𝑝𝑟  to true 

labels and generated samples from 𝑝𝑔 to fake labels correctly. 

Practically, rather than minimizing objective function log⁡(1 −
𝐷(𝐺(𝑧)))  the generator is trained to maximizing 

log⁡(𝐷(𝐺(𝑧)))  for the consideration of gradients when 

training. The generator continues improving its ability to 

generate realistic images, and the discriminator also increase 

its capacity to discern real data from generated data. Finally, 

through this adversarial training, the generated images are able 

to fit the distribution within the manifold of the real data. Note 

that the GAN we used only trains on single class of data, which 

in our method, we only trains on qualified samples. Defective 

samples no longer needed in the training of neural networks. 

B. Evaluation of Generated Results 

Before applying the learned GAN for industrial anomaly 

detection, quantitative evaluations should be applied on the 

generated results to ensure the generated results are valid. T-

distributed Stochastic Neighbor Embedding (t-SNE) [22] 

provides a visualization of the cluster, and we use it as a 

visualization of relationships between our generated results 

and the input real samples. To achieve this visualization, T-

SNE performs dimension reduction by measuring scaled 

squared Euclidean distance of the incoming data in high-

dimensional space while retaining that relationships in low-

Figure 1. The overview of our proposed method. 

 

Figure 3. The structure of the generative adversarial network we used in 
the proposed approach. First, latent codes are initialized in the latent 

space. 

 

min
𝐺
max
𝐷

𝑉(𝐺,𝐷) 

= 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)ሾlog𝐷(𝑥)ሿ + 𝔼𝑧~𝑝𝑧(𝑧) ቂlog ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ, (1) 
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dimensional space. Equations of measurement in high-

dimensional space and low-dimensional space is given in 

equations (2) and (3) respectively. 

In equation (2), 𝑝𝑖𝑗 calculates the pair-wise dissimilarity 

of high-dimensional data points 𝑥𝑖  and 𝑥𝑗 , while 𝑞𝑖𝑗  in 

equation (3) calculates that of low-dimensional data points 𝑦𝑖  
and 𝑦𝑗 . 

C. Learning Representation by Optimizing the Latent Space 

The generators of GANs learn the mapping from latent 

space to image space. However, we are more interested in the 

mapping learned by the generator in the training stage because 

the latent space is full of information although it is not often 

visualized. Therefore, by optimizing the latent representations, 

we presume that the discrepancies are clear between the 

qualified samples and defective samples in the latent space. 

Figure 4. Optimization process of the latent space. We use Laplacian 

pyramid L1 loss as our reconstruction loss and propagate back to the latent 

space. 

 

Once the training of GAN is finished, we have learned the 

latent representations from the pre-trained generator (trained 

by ourselves). In this stage, we view the trained generator as 

the standard mapping and fix the parameters of the generator 

during optimization. Fig. 4 is an illustration of the optimization 

process. The gradient with respect to 𝑧 is obtained by back-

propagating the gradients through the generator from the 

image space ℝ to the latent space ℤ. In our settings, we use 

Stochastic Gradient Descent (SGD) to perform the 

optimization. 

Reconstruction Loss In the process of optimization, we 

define the loss of reconstruction in image space as the 

reconstruction loss. To ensure the optimization is able to learn 

the correct latent representation, we choose L1 loss as our 

reconstruction loss during optimization. On the other hand, 

squared-loss function leads to blurry effects, which is not 

desirable in reconstruction of industrial images. In addition, 

the loss used in training GAN is a convolutional network (the 

discriminator D), which focuses more on the edges. Hence, L1 

loss is a better choice for reconstructing the correct latent 

representations.  

 

D. Latent Space Measurements 

Quantitative measurements are directly applied after the 

optimization to determine how defective the incoming samples 

are. Our measurement modifies from Fréchet Inception 

Distance [23], which is a similarity measurement for generated 

images. We apply measurement similar to FID. In order to 

provide a concrete decision of whether this sample is defective 

or not, we use Fréchet distance [25] as our measurement 

between two multivariate normal distributions in the latent 

space. This calculation does not consume much resources for 

computation, thus it is able to do fast prediction. 

𝑝𝑖𝑗 =
exp(−ฮ𝑥𝑖−𝑥𝑗ฮ

2
2𝜎2ൗ )

σ exp(−ԡ𝑥𝑘−𝑥𝑙ԡ
2 2𝜎2Τ )𝑘≠𝑙

. 

 

𝑞𝑖𝑗 =
exp(−ฮ𝑦𝑖−𝑦𝑗ฮ

2
)

σ exp(−ԡ𝑦𝑘−𝑦𝑙ԡ
2)𝑘≠𝑙

. 

(2) 

(3) 

Figure 5. Generated images based on different industrial datasets. Each 

part contains 16 images. (a) and (b): wood texture datasets. (c): solar panel 

dataset. (d): DAGM open-source industrial dataset. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 Figure 6. T-SNE visualization of the relationships between generated 

results and the real samples. This is directly applied in image space in 

order to observe the pixel-wise relationships without loss of information. 

(a): wood texture. (b): solar panel. 

(a) 

 
(b) 
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IV. EXPERIMENTAL RESULTS 

We trained our models on a single 1080ti GPU  and  mainly 
choose two types of industrial datasets: the solar panel dataset 
and the wood texture dataset. They are highly structured 
texture and arbitrary texture respectively. We also tested on 
open-source DAGM industrial dataset in some experiments. 

A. Generated Samples and Visualization 

The GAN we used is able to capture the probabilities of 
industrial datasets. In Fig. 5(a) and 5(b), we input random 
wood texture images into the GAN, whereas in Fig. 5(c), we 
input solar panels that are highly structured. After training on 
these different industrial datasets, we observe that GANs are 
robust in generating both non-structured images and highly-
structured images. In Fig. 5(d), we further generate from the 
open-source industrial dataset. 

In Fig. 6, t-SNE visualization is directly applied in image 
space to observe the relationships between generated results 
and the real samples. We do not perform Principle Component 
Analysis (PCA) or other dimension reduction operations in 
advance so there is no loss of information for comparison. 
From the visualization results, the generated samples (red 
crosses) are within the same manifold of the input real samples 
(blue circles) which shows the effectiveness of the generators. 
This visualization is important because if the generator cannot 
fully represent the mapping from the latent space to the image 
space, the optimization of the latent space would be biased. 

B. Latent Space Convexity 

It is important that the latent space formed by the GANs is 

convex. Fig. 7 shows the interpolation between the learned 

latent vectors over qualified samples. We randomly sampled a 

pair of latent vectors from latent space and linearly 

interpolated 64 images (from top-left to bottom-right) between 

that pair. The reconstructed results show that our optimized 

representation space is smooth and exhibits convexity. This 

continuous property in the latent space provides us another 

way to visually evaluate whether the incoming sample is 

defective or not. It is helpful in anomaly detection because we 

can easily distinguish the qualified samples from defective 

ones if the interpolation of representations in the latent space 

is not in the original convex space.  

Fig. 8 illustrates this phenomenon. We linearly 

interpolated 64 images between the pairs in the latent space 

from defective samples and found that the optimized 

representation space after reconstruction is not smooth and 

obviously generates images which are not meaningful. There 

are huge differences between qualified samples and defective 

samples in the latent space, whereas these differences are 

almost undiscernible in the image space. 

C. Identification of the Defects 

The defects used in this paper are not very clear visually 
and the defective regions are vague (see Fig. 9). Nevertheless, 
we demonstrate that identifying the defects by using our 
proposed approach can be easily achieved. Because we only 
train our GAN only to generate qualified samples, it is hard for 
the generator to generate defective samples even if the 
reconstructed images of the latent vectors are trying to 

minimize the reconstruction loss. The reconstructed images 
shown in Fig. 10 best describe this observation. We can easily 
distinguish defective samples from qualified samples after 
reconstruction.  

D. Fréchet Distance of Defective Latent Vectors 

In calculating Fréchet distances, we compare our generated 
samples with the optimized latent vectors of the qualified 
samples so that these comparisons have a common basis. For 
solar panel dataset, we compare three sets of latent vectors in 
Table I: (1) qualified generated data; (2) type I defect of 
contamination; (3) type II defect of contamination. In the first 
row of Table I (generated from qualified solar panels), we 
compared the generated images with original qualified 
samples. Besides the t-SNE visualization described previously, 
Fréchet distance again verify that our generator can generate 
qualified samples effectively. Alternatively, it indicates that 
the proposed method learns the correct mapping from the 
latent space to the image space. Table II shows the 
comparisons of wood texture dataset. We also tested on 
different types of defects and show that our method can predict 
the defective samples effectively. 

TABLE I.  THE FRÉCHET DISTANCES OF THE LATENT SPACE OF SOLAR 

PANEL DATASET 

Name of Optimized Latent Vectors Fréchet Distance 

Generated samples of solar panels 0.03 

Type I defect of Contamination 0.31 

Type II defect of Contamination 0.33 

 

Figure 7. Interpolation of the learned latent vectors over qualified 

samples. (a): solar panel. (b): wood texture. 

(a) 

 
(b) 
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TABLE II.  THE FRÉCHET DISTANCES OF LATENT VECTORS OF WOOD 

TEXTURE DATASET 

Name of Optimized Latent Vectors Fréchet Distance 

Generated samples of wood texture 0.026 

Marker stains 33824249.86 

Crack damages 34560055.17 

Hot glue stains 34635743.63 

Lubricant stains 34410635.66 

 

The smaller value of Fréchet distance means that it is more 

similar to the qualified samples. However, in Table I, the 

distances between two types of defects in solar panel are small. 

This is because defects of contamination of solar panels are 

nearly undiscernible under human eyes, even under the 

advanced optical devices in AOI machines. The optimized 

latent vectors increase the pixel-wise differences in the image 

space and magnifies this differences in the latent space. For 

wood texture dataset, the defects are easier to distinguish, so 

the Fréchet distances are in the same magnitude. 

E. Comparisons with Other Methods 

In Table III, we compare our results with other 

unsupervised classification methods implemented on the 

same datasets. Gaussian Mixture Model (GMM) achieves the 

best accuracies among the other two methods: One-class 

Support Vector Machine (SVM) and Local Outlier Factor 

(LOF). However, the results show that our method is more 

robust at detecting the defects in these two datasets.  

TABLE III.  THE COMPARISONS WITH OTHER UNSUPERVISED METHODS 

Unsupervised 

Method 

Accuracy (%) 

Solar Panel Wood Texture 

Our Method 93.75% 92.04% 

GMM 86.33% 68.53% 

One-class SVM 56.96% 44.54% 

LOF 46.56% 65.74% 

 

V. CONCLUSION 

We present a new framework for anomaly detection in 

industrial datasets by training a GAN using only one class of 

data in a dataset. Because GAN capture the distribution of the 

same class of data, it is possible to learn the mapping from the 

latent space to the image space by input only the qualified 

samples. This observation allows us to learn the latent 

representation by inverting the GAN. 

Several discoveries are found during our experiments. 

First, the GANs are known for generating images with 

random distributions. Nevertheless, our results show that 

GANs are also good at generating structured data in industrial 

images. Second, we learn the latent representation by back-

propagating to the latent space using gradient descent. We 

reconstruct the images and found that the latent space of 

qualified samples is convex and visually meaningful. Our 

proposed method can easily distinguish the defects from the 

reconstructed images after optimization. This shows a 

significant improvement since the defects are very vague and 

cannot be detected by current AOI machines directly. We 

further calculate Fréchet distances for each set of optimized 

Figure 8. Interpolation of the learned latent vectors over defective 

samples. (a): solar panel. (b): wood texture. 

(a) 

 
(b) 

 

 

Figure 9. The defective samples along with the qualified samples of 

solar panel and wood texture datasets. 

Solar Panel Dataset 

Qualified sample Defective samples 

    

 

Wood Texture Dataset 

Qualified sample Defective samples 

 

   

   

 

 

Figure 10. The comparisons of reconstructed images and input samples. 
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Defective 
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latent vectors, which gives us a concrete quantitative 

measurement of how defective this sample is.  

Our proposed method can effectively solve the current 

problems encountering in examining defects of industrial 

datasets. The one-class classification reduces the need to 

collect defective samples for training using other methods. 

We can not only detect the existing defects but also detect 

unknown defects in future processing events. 
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